基于adams的起重機(jī).doc
約70頁(yè)DOC格式手機(jī)打開展開
基于adams的起重機(jī),摘要啃軌現(xiàn)象是起重機(jī)使用過(guò)程中的三大頑疾之一,啃軌是指起重機(jī)的大車或小車在運(yùn)行過(guò)程中車輪輪緣與軌道側(cè)面接觸磨損,影響起重機(jī)正常安全運(yùn)行的現(xiàn)象。隨著起重機(jī)在各行業(yè)廣泛使用,研究啃軌現(xiàn)象發(fā)生的原因并加以預(yù)防消除具有十分重要的意義。本文主要研究?jī)?nèi)容是:1.采用pro/e與adams軟件完成對(duì)自動(dòng)化軌道吊rmg的實(shí)體造型與動(dòng)力...
內(nèi)容介紹
此文檔由會(huì)員 違規(guī)屏蔽12 發(fā)布
摘 要
啃軌現(xiàn)象是起重機(jī)使用過(guò)程中的三大頑疾之一,啃軌是指起重機(jī)的大車或小車在運(yùn)行過(guò)程中車輪輪緣與軌道側(cè)面接觸磨損,影響起重機(jī)正常安全運(yùn)行的現(xiàn)象。隨著起重機(jī)在各行業(yè)廣泛使用,研究啃軌現(xiàn)象發(fā)生的原因并加以預(yù)防消除具有十分重要的意義。
本文主要研究?jī)?nèi)容是:
1. 采用Pro/E與ADAMS軟件完成對(duì)自動(dòng)化軌道吊RMG的實(shí)體造型與動(dòng)力學(xué)模型。通過(guò)有限元軟件Altair Hypermesh與ABAQUS完成有限元建模,計(jì)算輸出ADAMS/Flex柔性分析所需要的模態(tài)中性文件MNF(Model Neutral File),運(yùn)用ADAMS軟件對(duì)RMG進(jìn)行剛?cè)狁詈戏治觯@得機(jī)構(gòu)系統(tǒng)的運(yùn)動(dòng)特性。
2. 根據(jù)起重機(jī)動(dòng)力學(xué)理論,建立自動(dòng)化軌道吊小車運(yùn)行機(jī)構(gòu)的動(dòng)力學(xué)模型,確定引起啃軌現(xiàn)象的外部邊界條件,并分析不同踏面形狀車輪在載荷作用下的力學(xué)響應(yīng),找出它們?cè)谡麢C(jī)運(yùn)行時(shí)自動(dòng)走直作用的基理,對(duì)比分析自動(dòng)走直效果以及各自的優(yōu)缺點(diǎn)。
3. 在ADAMS/Flex中結(jié)合FEA和MSS分析橋架系統(tǒng)的各階主要模態(tài)特性以及模態(tài)疊加特性,探究起重機(jī)運(yùn)行過(guò)程中的水平剛度和垂直剛度對(duì)啃軌現(xiàn)象的影響,并進(jìn)行局部的結(jié)構(gòu)設(shè)計(jì)優(yōu)化。
4. 在ADAMS/Insight中設(shè)計(jì)試驗(yàn)來(lái)評(píng)價(jià)啃軌影響因子變量在一定邊界條件下對(duì)目標(biāo)函數(shù)的影響性能,通過(guò)敏感度分析得到變量的影響權(quán)重,更好地分析試驗(yàn)設(shè)計(jì)的結(jié)果,有效區(qū)分關(guān)鍵變量和非關(guān)鍵變量。
在大多數(shù)起重機(jī)設(shè)計(jì)時(shí),一般先考慮垂直剛度,它決定起重機(jī)承載能力,然后校核水平剛度,然而對(duì)于啃軌現(xiàn)象,水平剛度的影響同樣重要,特別是小車的啃軌。通過(guò)在ADAMS中結(jié)合FEA(有限元分析)和MSS(多剛體機(jī)械系統(tǒng)仿真)的系統(tǒng)大位移彈性體研究,發(fā)現(xiàn)了起重機(jī)橋架局部結(jié)構(gòu)變動(dòng)引起其模態(tài)差異進(jìn)而影響啃軌現(xiàn)象發(fā)生的趨勢(shì)。
本文通過(guò)虛擬樣機(jī)技術(shù)針對(duì)起重機(jī)啃軌現(xiàn)象影響因素進(jìn)行研究,為解決起重機(jī)啃軌問(wèn)題提供了技術(shù)和理論上的支持。
關(guān)鍵詞 起重機(jī);啃軌;ADAMS;試驗(yàn)設(shè)計(jì)
Abstract
Gnawed rail, the contacting abrasion generated between wheel flange and slide flange of track in the process of gantry crane walking, is one of the three sufferings in the using process of gantry crane, which affects the natural and safe operation of crane. As gantry crane becomes more widely used in various industries, it is significant to study the reason of gnawed rail phenomenon and how to prevent and offset it.
The main contents of research include:
1. The three Dimension model and dynamic model of automatic track crane RMG were established by using Pro/E and ADAMS. FEM of RMG was obtained by using finite element software Altai Hypermesh and ABAQUS. MNF which is needed for ADAMS/Flex flexible analysis was calculated and locomotion character of mechanical system was gained through firm and flexible coupling analysis of RMG using ADAMS.
2. According to the dynamic theory of crane, the dynamic model of walking machine of automatic track crane was established. External boundary conditions inducing gnawed rail were confirmed. Mechanical response of different tread wheels under load were analyzed. Basic principles of automatically go straight effect when they are in the walking process was found.
3. Combining the FEA AND MSS in ADAMS/Flex to analyze the main modal character and modal superposition character of bridge system, the affectness of level and vertical stiffness on gnawed rail in the walking process was researched, and partical structural was optimized.
4. In ADAMS/Insight, complex experiment was designed to eva lute the impacting character of factor variables of gnawed rail on objective functions under certain boundary conditions. Impacting extent of variables was obtained through the sensitivity analysis, which makes it better to analyze the experimental results, distinguish between key variables and non-critical variables.
This thesis studied the impacting factors of gnawed rail phenomonen of gantary crane based on virtual prototyping technology and provides technical and academic supports for solving the phenomenon.
Key word gantry crane, gnawed rail, ADAMS, experimental design
目 錄
摘 要 I
Abstract II
第1章 緒論 1
1.1 課題研究背景及意義 1
1.1.1 研究背景 1
1.1.2 研究意義 1
1.2 課題研究現(xiàn)狀及發(fā)展趨勢(shì) 2
1.2.1 研究現(xiàn)狀 2
1.2.2 發(fā)展趨勢(shì) 9
1.2.3 存在問(wèn)題 10
1.3 課題研究?jī)?nèi)容及章節(jié)安排 10
1.3.1 研究?jī)?nèi)容 10
1.3.2 章節(jié)安排 11
第2章 多體動(dòng)力學(xué)理論 12
2.1 多體系統(tǒng)動(dòng)力學(xué) 12
2.2 多剛體系統(tǒng)動(dòng)力學(xué) 12
2.3 多柔體系統(tǒng)動(dòng)力學(xué) 16
2.4 多體系統(tǒng)動(dòng)力學(xué)方程求解 18
2.5 本章小結(jié) 20
第3章 不同踏面形狀車輪對(duì)啃軌的影響 21
3.1 不同踏面車輪的種類及其特點(diǎn) 21
3.2 引起啃軌現(xiàn)象的載荷分析 23
3.3 車輪與軌道接觸定義 26
3.4 驅(qū)動(dòng)輪布置 28
3.5 車輪與軌道接觸應(yīng)力分析 29
3.6本章小結(jié) 32
第4章 起重機(jī)橋架剛度對(duì)啃軌的影響 33
4.1 橋架的理想變形狀態(tài) 33
4.2 橋架的剛度與模態(tài) 34
4.2.1 橋架的剛度 34
4.2.2 橋架的模態(tài) 34
4.3 橋架的結(jié)構(gòu)特點(diǎn)與剛度計(jì)算 35
4.4 橋架模態(tài)中性文件的建立 36
4.4.1 Pro/E實(shí)體建模 37
4.4.2 Hypermesh網(wǎng)格劃分 38
4.4.3 Abaqus生成MNF文件 40
4.5 橋架ADAMS模態(tài)分析 41
4.6 橋架的模態(tài)優(yōu)化分析 44
4.7 本章小結(jié) 47
第5章 啃軌現(xiàn)象影響因素的試驗(yàn)設(shè)計(jì)與DOE分析 48
5.1 設(shè)計(jì)變量選擇 48
5.2 參數(shù)化建模 48
5.2.1設(shè)計(jì)變量參數(shù)化 49
5.2.2創(chuàng)建目標(biāo)函數(shù) 50
5.2.3求解器設(shè)置 51
5.3 變量的設(shè)計(jì)研究 52
5.4 變量的試驗(yàn)設(shè)計(jì) 55
5.5 ADAMS/Insight DOE(Design of Experiments..
啃軌現(xiàn)象是起重機(jī)使用過(guò)程中的三大頑疾之一,啃軌是指起重機(jī)的大車或小車在運(yùn)行過(guò)程中車輪輪緣與軌道側(cè)面接觸磨損,影響起重機(jī)正常安全運(yùn)行的現(xiàn)象。隨著起重機(jī)在各行業(yè)廣泛使用,研究啃軌現(xiàn)象發(fā)生的原因并加以預(yù)防消除具有十分重要的意義。
本文主要研究?jī)?nèi)容是:
1. 采用Pro/E與ADAMS軟件完成對(duì)自動(dòng)化軌道吊RMG的實(shí)體造型與動(dòng)力學(xué)模型。通過(guò)有限元軟件Altair Hypermesh與ABAQUS完成有限元建模,計(jì)算輸出ADAMS/Flex柔性分析所需要的模態(tài)中性文件MNF(Model Neutral File),運(yùn)用ADAMS軟件對(duì)RMG進(jìn)行剛?cè)狁詈戏治觯@得機(jī)構(gòu)系統(tǒng)的運(yùn)動(dòng)特性。
2. 根據(jù)起重機(jī)動(dòng)力學(xué)理論,建立自動(dòng)化軌道吊小車運(yùn)行機(jī)構(gòu)的動(dòng)力學(xué)模型,確定引起啃軌現(xiàn)象的外部邊界條件,并分析不同踏面形狀車輪在載荷作用下的力學(xué)響應(yīng),找出它們?cè)谡麢C(jī)運(yùn)行時(shí)自動(dòng)走直作用的基理,對(duì)比分析自動(dòng)走直效果以及各自的優(yōu)缺點(diǎn)。
3. 在ADAMS/Flex中結(jié)合FEA和MSS分析橋架系統(tǒng)的各階主要模態(tài)特性以及模態(tài)疊加特性,探究起重機(jī)運(yùn)行過(guò)程中的水平剛度和垂直剛度對(duì)啃軌現(xiàn)象的影響,并進(jìn)行局部的結(jié)構(gòu)設(shè)計(jì)優(yōu)化。
4. 在ADAMS/Insight中設(shè)計(jì)試驗(yàn)來(lái)評(píng)價(jià)啃軌影響因子變量在一定邊界條件下對(duì)目標(biāo)函數(shù)的影響性能,通過(guò)敏感度分析得到變量的影響權(quán)重,更好地分析試驗(yàn)設(shè)計(jì)的結(jié)果,有效區(qū)分關(guān)鍵變量和非關(guān)鍵變量。
在大多數(shù)起重機(jī)設(shè)計(jì)時(shí),一般先考慮垂直剛度,它決定起重機(jī)承載能力,然后校核水平剛度,然而對(duì)于啃軌現(xiàn)象,水平剛度的影響同樣重要,特別是小車的啃軌。通過(guò)在ADAMS中結(jié)合FEA(有限元分析)和MSS(多剛體機(jī)械系統(tǒng)仿真)的系統(tǒng)大位移彈性體研究,發(fā)現(xiàn)了起重機(jī)橋架局部結(jié)構(gòu)變動(dòng)引起其模態(tài)差異進(jìn)而影響啃軌現(xiàn)象發(fā)生的趨勢(shì)。
本文通過(guò)虛擬樣機(jī)技術(shù)針對(duì)起重機(jī)啃軌現(xiàn)象影響因素進(jìn)行研究,為解決起重機(jī)啃軌問(wèn)題提供了技術(shù)和理論上的支持。
關(guān)鍵詞 起重機(jī);啃軌;ADAMS;試驗(yàn)設(shè)計(jì)
Abstract
Gnawed rail, the contacting abrasion generated between wheel flange and slide flange of track in the process of gantry crane walking, is one of the three sufferings in the using process of gantry crane, which affects the natural and safe operation of crane. As gantry crane becomes more widely used in various industries, it is significant to study the reason of gnawed rail phenomenon and how to prevent and offset it.
The main contents of research include:
1. The three Dimension model and dynamic model of automatic track crane RMG were established by using Pro/E and ADAMS. FEM of RMG was obtained by using finite element software Altai Hypermesh and ABAQUS. MNF which is needed for ADAMS/Flex flexible analysis was calculated and locomotion character of mechanical system was gained through firm and flexible coupling analysis of RMG using ADAMS.
2. According to the dynamic theory of crane, the dynamic model of walking machine of automatic track crane was established. External boundary conditions inducing gnawed rail were confirmed. Mechanical response of different tread wheels under load were analyzed. Basic principles of automatically go straight effect when they are in the walking process was found.
3. Combining the FEA AND MSS in ADAMS/Flex to analyze the main modal character and modal superposition character of bridge system, the affectness of level and vertical stiffness on gnawed rail in the walking process was researched, and partical structural was optimized.
4. In ADAMS/Insight, complex experiment was designed to eva lute the impacting character of factor variables of gnawed rail on objective functions under certain boundary conditions. Impacting extent of variables was obtained through the sensitivity analysis, which makes it better to analyze the experimental results, distinguish between key variables and non-critical variables.
This thesis studied the impacting factors of gnawed rail phenomonen of gantary crane based on virtual prototyping technology and provides technical and academic supports for solving the phenomenon.
Key word gantry crane, gnawed rail, ADAMS, experimental design
目 錄
摘 要 I
Abstract II
第1章 緒論 1
1.1 課題研究背景及意義 1
1.1.1 研究背景 1
1.1.2 研究意義 1
1.2 課題研究現(xiàn)狀及發(fā)展趨勢(shì) 2
1.2.1 研究現(xiàn)狀 2
1.2.2 發(fā)展趨勢(shì) 9
1.2.3 存在問(wèn)題 10
1.3 課題研究?jī)?nèi)容及章節(jié)安排 10
1.3.1 研究?jī)?nèi)容 10
1.3.2 章節(jié)安排 11
第2章 多體動(dòng)力學(xué)理論 12
2.1 多體系統(tǒng)動(dòng)力學(xué) 12
2.2 多剛體系統(tǒng)動(dòng)力學(xué) 12
2.3 多柔體系統(tǒng)動(dòng)力學(xué) 16
2.4 多體系統(tǒng)動(dòng)力學(xué)方程求解 18
2.5 本章小結(jié) 20
第3章 不同踏面形狀車輪對(duì)啃軌的影響 21
3.1 不同踏面車輪的種類及其特點(diǎn) 21
3.2 引起啃軌現(xiàn)象的載荷分析 23
3.3 車輪與軌道接觸定義 26
3.4 驅(qū)動(dòng)輪布置 28
3.5 車輪與軌道接觸應(yīng)力分析 29
3.6本章小結(jié) 32
第4章 起重機(jī)橋架剛度對(duì)啃軌的影響 33
4.1 橋架的理想變形狀態(tài) 33
4.2 橋架的剛度與模態(tài) 34
4.2.1 橋架的剛度 34
4.2.2 橋架的模態(tài) 34
4.3 橋架的結(jié)構(gòu)特點(diǎn)與剛度計(jì)算 35
4.4 橋架模態(tài)中性文件的建立 36
4.4.1 Pro/E實(shí)體建模 37
4.4.2 Hypermesh網(wǎng)格劃分 38
4.4.3 Abaqus生成MNF文件 40
4.5 橋架ADAMS模態(tài)分析 41
4.6 橋架的模態(tài)優(yōu)化分析 44
4.7 本章小結(jié) 47
第5章 啃軌現(xiàn)象影響因素的試驗(yàn)設(shè)計(jì)與DOE分析 48
5.1 設(shè)計(jì)變量選擇 48
5.2 參數(shù)化建模 48
5.2.1設(shè)計(jì)變量參數(shù)化 49
5.2.2創(chuàng)建目標(biāo)函數(shù) 50
5.2.3求解器設(shè)置 51
5.3 變量的設(shè)計(jì)研究 52
5.4 變量的試驗(yàn)設(shè)計(jì) 55
5.5 ADAMS/Insight DOE(Design of Experiments..