banach不動點(diǎn)定理的推廣.doc
banach不動點(diǎn)定理的推廣,banach不動點(diǎn)定理的推廣原創(chuàng)摘 要:本文先介紹了banach不動點(diǎn)原理即壓縮映射原理,再將映射從 到 的, 是完備的,改為在它的子集上,如:開球,閉球,有界閉集,緊集等,添加某些條件及其限制,得到定義在上述子集上的不動點(diǎn)定理和推論,并將文 中的例2給予了正確證法。關(guān)鍵詞:度量空間; 完備度量空間; 不動點(diǎn); 壓縮映...
內(nèi)容介紹
此文檔由會員 zhangdanhong 發(fā)布Banach不動點(diǎn)定理的推廣
原創(chuàng)
摘 要:本文先介紹了Banach不動點(diǎn)原理即壓縮映射原理,再將映射從 到 的, 是完備的,改為在它的子集上,如:開球,閉球,有界閉集,緊集等,添加某些條件及其限制,得到定義在上述子集上的不動點(diǎn)定理和推論,并將文 中的例2給予了正確證法。
關(guān)鍵詞:度量空間; 完備度量空間; 不動點(diǎn); 壓縮映射; Banach不動點(diǎn)原理
The extensions of Banach immovable point
Abstract: In this paper, at first it presents Banach immovable point principle i.e. contraction mapping principle, then let a mapping from X to X which is a complete metric space change into its subsets .Such as: open sphere, closed sphere, bounded closed set, compact set and so on, add to some conditions and limititation, so the theorem of fixed point and generalization which are defined in the above subsets can be obtained. At last giving the right proof of example two of the paper .
Keywords: metric space; complete metric space; fixed point; contraction mapping; Banach immovable point;